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Sharing of side-effects under nondeterminism in Prolog

Mario Wenzel1, Jonas Höfer2

Abstract: In this paper we explore a novel semantics of logic programming with side-effects under
nondeterminism.

While Prolog executes every side-effect whenever a sub-goal entailing side-effects is encountered,
regardless of nondeterminism, Curry disallows side-effects under nondeterminism completely.

We propose a semantics of sharing of effects between separate branches of nondeterministic com-
putations in a way that both allows side-effects under nondeterminism but also isolates alternate
computations from side-effects of other branches.
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1 Introduction

Nondeterminism is a useful abstraction in programming. It usually allows us to traverse
alternate code paths without explicitly implementing a traversal strategy. These abstractions
allow us to state problems in a declarative manner and the implementation, maybe with
some hints on the search strategy, explores the search space and gives us one or many
solutions that fit our initial parameters, if any are found.

Prolog, for example, is part of almost every computer science curriculum and has been asso-
ciated with symbolic AI and planning for decades. Many other programming languages, like
Curry [Ha97], and logic programming models, like Answer Set Programming [Li19], also
employ a model of nondeterminism to answer queries or implement decision procedures.

Often times in Prolog programming the order in which the clauses defining a predicate
occurs in the program and the order of the goals in the body of a rule is of vital importance
when evaluating a user’s query. It is said that an important part of the philosophy of logic
programming is, that programs should be written to minimize the effect of these two factors
as far as possible [Br05]. We call programs that do so fully or partly declarative.
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Fully declarative programs are easier to reason about, as the order of the internal operations
and implementation details have no bearing on the results the system gives in response to a
query.

It is considered good Prolog programming style to make programs as declarative as possible.
This can greatly reduce the likelihood of making errors that are hard to detect, particularly
when backtracking is used [Br05].

Besides commutativity of the clauses and subgoals, another desirable property of a Prolog
program is “separability”, meaning that clauses (and predicates) can be read in isolation.
Wrong usage of the cut, for example, may lead to predicates not being as general as possible
or “missing” solutions. Additionally, one must know which alternatives may have been
“cut” and are not relevant for this specific clause.

There are methods and best practices to write Prolog programs that are as declarative as
possible. For example, using the Constraint Logic Programming modules it is often possible
to avoid cuts and negations by using constraints, and grounding or instantiating values as
late as possible.

Another important advice is to avoid predicates that entail side-effects, like asserta/1 or
retract/1. While it might be possible to avoid dynamic changes to the internal database
of our program, or even track and backtrack those changes, this is not possible when we
write programs explicitly for their side-effects. We want to read and write data, interactively
react to external requests, or run sub-programs and start other processes.

Rather than just return a model of a logic program, logic programming languages like
Prolog and Curry allow to encode side-effects, like reading files, prompt the user, or write
to sockets. This allows us to write complex and interactive programs in those programming
languages, employing nondeterminism for our search strategies and decision procedures.
Issues start to arise when we have input and output under nondeterminism. The semantics
heavily depends on the specifics of the employed search strategy, or even implementation
details of the interpreter or compiler. More problematic, we often suspend our mental
nondeterministic model of the program and produce rather imperative code.

In Prolog side-effects happen whenever a sub-goal corresponding to an IO-action is encoun-
tered as the next proof goal. The side-effect is executed and we go on to prove the next
sub-goal. If we now need to backtrack over this IO-action, the side-effect is not taken back,
as this is generally impossible due to the flow of time.

In Curry, on the other hand, if a sub-goal with side-effects is encountered under nondeter-
ministic execution, we get an error. Depending on the interpreter used, the side-effects still
happen (PAKCS) or the program terminates with the stated error (KiCS).

Both are valid strategies of handling side-effects. Prolog’s strategy is simple but expressive
though the programmer has to be aware of the evaluation semantics. The Curry approach,
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while consistent, may be seen as too restrictive. At least one branch containing IO operations
may be explored and the resulting side-effects of this branch would be consistent with a
deterministic execution of this path. The Prolog approach may be seen as not restrictive
enough, as every side effect in every branch happens, irrespective of computations and side-
effects in other branches, that may already have irrecoverably destroyed the environment
our branch expected. Therefore, alternate choices cannot be viewed independently of each
other.

Another difficulty is that side-effects in Prolog are extra-logical in the sense that they are
not modelled. They “just happen”, when entering a subgoal that entails the side-effect.
And while on a logical level the subgoals of a query such as "write(a), write(b)."
are commutative, it is quite clear, that we can not reasonably expect commutativity from
the side-effects. The effects happened and are ordered in time. Switching the side-effect-
entailing predicates in the query changes the order of side-effects happening. Though for a
single side-effect it is not clear why anything should change when commuting an effectful
predicate with a side-effect free one. But consider the query "(X=1;X=2), write(a)."
that prints either one or two as, depending on whether write appears before or after the
alternative unifications.

In this paper we explore a different approach to handling side-effects under nondeterminism.
We mark IO-operations and suspend computation on all alternate branches when a goal
with side-effects is encountered. Once all branches have either returned a valid solution
(e. g., a variable binding) or reached a suspended goal, we use a selection predicate and
execute some or all of the suspended side-effects.

This allows us to share side-effect between branches, if they evaluate the same IO-operation.
Furthermore, it allows us to fail branches with different IO actions than the one we chose.
This ensures a consistent sequence of IO actions for the branches. This approach effectively
isolates the branches against effects of other branches of the computation. We may use
different procedures to select the IO action we allow to happen. We implemented a leftmost
strategy similar to SLD resolution, where the leftmost IO operation is always chosen
and shared with all branches with compatible IO. But we also implemented a consensus-
based selection method, where the IO operation, that most branches expected to happen,
is executed. Finally, we also recover the original Prolog semantics within our generic
framework.

In Section 2 we will recapitulate SLD-resolution with a special focus on side-effects and
their visibilty throughout the resolution process. In Section 3 we lay out our core idea of
sharing compatible side-effects between alternate branches of our resolution procedure. In
Section 4 we show the broadness of our approach through several examples, and conclude
with some open questions in Section 5.
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2 Resolution-Trees and Side-Effects

The derivations of a Prolog program may be represented by a possibly infinite tree called
SLD-Tree. We recapitulate an example from the literature [NM90] for the SLD-Tree of
← grandfather(a,X) (Figure 1) of the program

(i) grandfather(X ,Z)← father(X ,Y )∧parent(Y ,Z).
(ii) parent(X ,Y )← father(X ,Y ).

(iii) parent(X ,Y )←mother(X ,Y ).
(iv) father(a,b).
(v) mother(b,c).

Nodes represent remaining proof goals. Alternate child branches for the same proof goal are
alternate rule applications (i. e., choice points). A � node means, that there exists an answer
substitution for a successful SLD-resolution along this path of rule applications. Prolog
systems use the ordering of the clauses to impose an ordering on the edges descending
from a node of the SLD-Tree, i. e., leftmost alternatives in the SLD-Tree correspond to
topmost clauses in the program. In Figure 2 we take a more abstract view of an SLD-Tree,
by deleting all � nodes (ignoring whether this particular subtree yields an answer or not)
and replacing all other nodes with #, ignoring the particulars of each proof goal.

← grandfather(a,X).

← father(a,Y0)∧parent(Y0,X).

← parent(b,X).

← father(b,X). ←mother(b,X).

�

Fig. 1: SLD-Tree of← grandfather(a,X)

When all nodes correspond to predicates that are free of side-effects, the order of resolution
steps is generally unobservable. The only information we receive as a user is the order of
answer substitutions (or solutions). When we consider nodes that have side-effects attached,
the side effect happens when the node is entered during tree traversal, the side effect may
be observable from that point on forward.

Let us consider the predicate read/1 that reads a term from the standard input of the
program, with the side-effect that this term is now gone from the input stream. We mark
the node  with the first subgoal read(X) in the SLD-Tree in Figure 3. The nodes where
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X is now bound and the return value of the operation with side-effects are visible are the
descendents marked  . From this point on, the side-effect is observable in a non-pure
manner for all derivations that come after, as marked by the solid line denoting time. All
nodes along the solid line will see the input stream altered. Any changes are visible in
neighbouring branches, which are effectively “the other clauses” for some predicates. We
clearly violate our separability principle.

Fig. 2: Depth-first search with backtracking through SLD-Tree [NM90]

tim
e

Fig. 3: Depth-first search with backtracking through SLD-Tree with side-effects

If the two nodes marked earlier have no solution, the side-effect is visible even though no
solution “under it” is. This means a caller may observe side-effects, even though their call
“failed” and did not yield solutions.

Let us again consider the query (X=1;X=2), write(a). from the introduction. By having
the side-effect after the alternatives, instead of before, we basically push down a side-effect
node in the tree and duplicate it, replicating the “problem” for every alternative.
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3 Shared World State for Alternate Derivations

During SLD-resolution on all paths from the root of the resolution tree to either TRUE or
FAIL-nodes, a sequence of IO actions happen. An IO action happening changes the state of
the system and can not be taken back.

Definition 1 (Input Argument). An input argument is an argument denoting the parameters
of an IO action. At call time it must be instantiated to a term. �

Definition 2 (Output Arguments). An output argument is an argument denoting the result
of an IO action. At call time it may or may not be bound. If the argument is bound at call
time, the goal behaves as if the argument were unbound, and then unified with that term
after the goal succeeds. �

Definition 3 (IO predicate). A predicate that entails IO. �

Definition 4 (IO action). An occurrence of an IO predicate within the goal list of an
SLD-resolution step. �

Definition 5 (Compatibile IO actions). A pair of IO actions is compatible iff they have the
same predicate and their input arguments can be unified. �

• Let some resolution step A0 that entails IO leads from a system state (or environment)
ε0 to ε1. During the backtracking operation, the side effects that lead from ε0 to ε1
can not be taken back.

• Let the resolution step A1 be the alternative to A0, as it is another clause for the first
subgoal, i. e., A0 may be a second rule that has a head that unifies with the selected
resolution literal.

• Then A1 (given it also entails IO) originally was to lead from system state ε0 to ε ′1,
but now, as ε0 is irrevocably gone, has to work with the environment ε1.

• A1, through the global state, is now “aware” that it is not the “first” resolution step,
even though the only available information to that resolution step or path should be
the already bound variables. The branches are not isolated.

Let a be a Prolog predicate that can be proven in two ways by two different write operations:

1 a :- writeln(1).
2 a :- writeln(2).
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Let ε be the environment before we try to prove a (line 1). Both rules expect the environment
before their write-operation to be ε , but after we have proven a using the first rule, the
environment is now ε ′. This is an “unexpected” situation for the second rule (line 2).

Of course, in general in a nondeterministic reading of the program it is not clear that 1
should even be written before 2. For a parallel evaluation of the rules, the order of side-
effects has to be painstakingly recovered [KPS88]. On the other hand, if both rules share
the same effect, we get the output twice, even though the second write may very well just
evaluate to true, as its effect has already happened.

• In our model we evaluate all alternate branches and suspend the computation of a
branch either if it is finished with a pure result, i. e., a variable binding, or its next
goal is an IO action.

• We employ a selection predicate that nondeterministically returns lists of sus-
pended computations that are either pure or have mutually compatible IO ac-
tions. The selection predicate has the form select(+ListOfComputations,
-ListOfComputations) and may be nondeterministic.

• The lists are handled sequentially

– If the computations are pure, the variable binding is returned.

– If the computations are not pure, the IO action is executed and its result is fed
back into each branch in the list, i. e., it is shared between the branches.

• All branches and IO actions that are not selected into a list fail.

This allows us to effectively isolate rules and branches against each other. For example, for
a selection predicate that returns a list of identical operations, we can give the guarantee
that if a branch succeeded with a variable binding, its IO actions are the only IO actions
that happened up to this point.

Note that in order to “collect” all continuations, our program is not allowed admit non-
termination in any branch due to infinite derivation depth (nt :- nt.), or a predicate with
an infinite number of choice points (repeat, but also length, if the first argument is not
bound).

The core ideas of the IO-aware semantics is: There is only one world. This means:

• When a query is fully evaluated and all solutions have been returned, there is a
sequence of IO actions A0 . . .An that have happened. Every path in the resolution tree
from the root node to a leaf node, both FAIL and TRUE-nodes, contains either the
full sequence of IO actions or a prefix of it.
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• When multiple alternative branches entail an IO action, only one side-effect actually
happens.

• All branches with compatible IO actions to the action that has happened receive
the result of the IO action, i. e. its output arguments and may continue with the
computation.

• All branches with incompatible IO actions could never have a prefix of A0 . . .An as
actions that happened and therefore fail before they execute the incompatible action.

If some branch succeeds, the programs observable behaviour is identical to the one without
backtracking (i. e. we can program as if we guess right every time).

4 Selection Predicates and Further Examples

We have implemented three selection predicates or strategies. As an example we use the
following predicate e. where we wrapped the usual Prolog writes into our own suspendable
writes with the shareable semantics.

1 e(W) :- nio_write("B"), W = 0.
2 e(W) :- nio_write("A"), W = 1.
3 e(W) :- nio_write("A"), W = 2.
4 e(W) :- W = 3.

In this example, the computations are suspended at the impure writes (three writes, one
with B and two with A) and a pure computation with a binding of W to 3.

4.1 Selector for Prolog Semantics

This selector recovers the original Prolog semantics with the output being the same as the
corresponding Prolog program:

IO write B
pure W = 0 ;
IO write A
pure W = 1 ;
IO write A
pure W = 2 ;
pure W = 3 .
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4.2 Selector for Leftmost Side-Effect

This selector first selects all pure computations and returns the results and then returns a list
of all suspended computations with IO actions compatible to the first (i. e., leftmost) IO
action. All other suspended computations fail:

pure W = 3 ;
IO write B
pure W = 0 .

This selection function is (in the sense that SLD-resolution is) not complete, as we cut
off other branches that do not fit our selected IO action. As described previously, there
is an argument to evaluate IO actions with an environment that was changed in “parallel”
branches as false, as we are unable to recover the original semantics of that IO action.

4.3 Selector for Side-Effect obtained through Consensus

The consensus selector finds all maximal lists of suspended impure computations where all
computations are pairwise compatible. We then return the longest of these lists.

pure W = 3 ;
io write A
pure W = 1 ;
pure W = 2 .

4.4 Further Examples

Through the sharing of arguments from side-effects it is possible to call predicates with
side-effects in a more general manner than usually allowed (i. e., with binding patterns that
would lead to a runtime error), as long as the unification is specialized enough.

• This allows either rules 1 and 3 or 2 and 3 to succeed together:

1 shared_write1 :- nio_write(pair(7,_)).
2 shared_write1 :- nio_write(pair(9,8)).
3 shared_write1 :- nio_write(pair(_,8)).

• This also allows for stealing of arguments between branches:
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1 shared_write2 :- nio_write("ABC").
2 shared_write2 :- nio_write(M), write("We stole: "), writeln(M).

Another application we propose are “linear protocols”, where some rather linear back-and-
forth of resource allocations and communications between two computers is written down
without a case distinction between protocol versions. This possibly allows us to “auto-select”
the proper protocol without having to extract code for, i. e., establishing a connection (the
starred predicates are wrapped IO):3

1 protocol(Server) :- openConnection*(Server,Connection),
getCapabilites*(Connection, Capabilites), supportsA(Capabilites),
doA*(Connection), close*(Connection).

↪→

↪→

2 protocol(Server) :- openConnection*(Server,Connection),
getCapabilites*(Connection, Capabilites), supportsB(Capabilites),
doB*(Connection), close*(Connection).

↪→

↪→

3 protocol(Server) :- openConnection*(Server,Connection),
getCapabilites*(Connection, Capabilites), close*(Connection), fail.↪→

In this case, the opening of the connection is shared between all branches, as is the retreival
of the server’s supported features. All network operations happen only once. We then check
whether the server supports a specific feature or protocol version. Branches or protocol
variants that are not supported by the server fail. doA and doB can not be shared. So
once we get to a do-goal, all other branches with differing goals will fail. If none of our
implementations is supported by the server, the last rule just closes the connection again
and returns with failure.

4.5 Implementation

The implementation uses algebraic effects [PP02] and handlers [PP09]. Our implementation
of effect handlers follows Schrijvers et al. [Sc13] and Saleh; Schrijvers [SS16].

We wrap the suspendable IO predicates and use a “runner” predicate to run a supplied goal
with a given selector predicate (?- run_nio_generic(consensus_selector, e(W)).)

As different IO predicates have different positions of input and output arguments, it is
necessary to wrap all wanted IO predicates individually. Internally, we want to make sure
that read, for example, is always called with a fresh variable (such that it always succeeds),
and this binding is then fed back into all branches, regardless of their actual argument. We
want the branches to fail at this point then. Similarly, while the IO actions read(a) and
read(b) are shareable (the same read(X) that is then unified with a and b), write(a)
and write(b) are not.
3 Of course, closing an opened connection or other resource should be done using setup_call_cleanup, which

cannot be implemented in Prolog.
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5 Conclusion and Open Questions

We have shown that there is some design space between Prolog’s decision to run IO under
nondeterminism “whenever”, and Curry’s decision not to allow IO under nonderterminism
at all.

Our solution is running just a single strand of side-effects and each alternative or branching
computation either uses the side-effects along this singular strand, or fails. All computations
that produce a solution have “seen” a consistent environment and have been effectively
shielded from side-effects that are not compatible with this computation’s “history” of
side-effects.

There are quite a few open questions that both lend themselves to further research and a
frank discussion:

• A writeln(T) action may either be wrapped with its own predicate or expanded to
the compound write(T), write(‘\n’). If we want to maximize sharing between
branches, which is the useful approach? Do we want to decompose writes of strings
into multiple writes of single character? Is it useful to share having written half a
string?

• Do larger interactive programs (with reading configuration files, listening to incoming
network requests, performing logging and maintenance tasks) even have codepaths
that lend themselves to sharing?

• To prevent the duplication of IO under nondeterminism, specifically for the example
of linear protocols, is it always possible and somewhat straightforward to just rewrite
the original Prolog program?

• Is it possible to recover the Curry semantics with this approach (i. e., selector predi-
cate)?

• We exchange depth-first for (not quite) breadth-first search through the SLD-Tree
(we advance each branch until we reach IO). That could use a lot of memory and lose
a lot of performance for some applications. If we restrict ourselves to the selector
for leftmost side-effects, we probably can go back to something similar to SLD-
resolution where we just need to additionally track a list of IO actions and their
results. With only a single selector, is this still useful and is it worth it, in terms of
resource usage?

• Should there be some control commands for the branches to interact with the IO that
was done? If so, which are they? At first glance, it seems reasonable that a branch
could say “well, that read did not succeed for me. But no harm done. Other branches
may ignore that IO.”
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