
(Hrsg.):
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

An Html5–Based Graphical User Interface
and a Transformation for Tennis Data in Xml

Daniel Weidner and Dietmar Seipel

Abstract: Xml is widely recognized as a prevalent and extensively employed data format for
representing semi–structured, complex and nested data. In earlier work, we had used transformation
grammars based on the field notation of our logic programming tool FnQuery for querying,
transforming, and updating Xml documents. However, some aspects could not be addressed in this
transformation.

In the present paper, we present an updated transformation approach data based on the graph notation
grammars of FnQuery to generate identifiers and establish a nesting logic of points and hits based
on timestamps. We can overcome the limitations of previous field notation grammars, while ensuring
the consistent and precise usage of coordinates.

In addition, we have built a web–based user interface for the tennis tool using Html 5 and Prolog’s
definite clause grammars (DCGs). We will elucidate the motivations behind this transition and outline
our approach for defining DCGs in the context of the new tool.

Keywords: Prolog; Xml Processing; Field Notation Grammars; Graph Notation Grammars; Html 5;
Definite Clause Grammars; Web Application

1 Introduction

Markup languages, such as Xml and Html, are essential for structuring and formatting
content in various contexts. The universal data format Xml allows for the storage and
exchange of structured information with its flexible syntax and customizable tags. It is
commonly used for data storage, configuration files, and web services. Html is specifically
designed for web pages. It focuses on the presentation and layout of content within browsers,
using predefined tags to defining structure and formatting for elements. Both Xml and Html
serve distinct purposes, with Xml emphasizing data representation and interoperability,
while Html concentrates on visually rendering web pages for user–friendly browsing.1

In this work, we work with both languages to present an updated version of our previous
work on the Xml transformation of tennis data, and to create a new graphical user interface
for the tennis tool in Html5. Starting with a convolutional neural network (CNN), data is
generated and stored in an Xml file. However the data is unclean and need pre–processing,
before we can use them for visualization and further data analysis, like it has already been
done in [We03].
1 This paragraph was originally drafted by ChatGPT.



2 Daniel Weidner and Dietmar Seipel

The domain–specific, declarative tool FnQuery/Pl4Xml was developed for querying,
transforming and updating Xml data, cf. [Di02]. It contains two Prolog document object
models: the field notation (FN) and the graph notation (GN), which represent Xml data
as terms and facts in Prolog, respectively, and languages for querying, transforming and
updating Xml data. In the prior research, we exclusively used field notation grammars,
which proved effective for an initial approach, but had limitations in achieving certain effects.
In contrast, this paper specializes in graph notation and details their advantages. I.e. we
build new grammars with this notation to generate identifiers and create a nesting logic of
points and hits based on timestamps. Additionally, we ensured the continuous and accurate
usage of coordinates throughout the process.

Furthermore, we have implemented a new graphical user interface of the tennis tool based
on Html5 using Definite Clause Grammars (DCGs). We will elucidate the motivations
behind this change and provide an explanation of our approach in defining DCGs to achieve
the desired functionality.

The rest of this paper is structured as fallows: Section 2 summarizes our previous work on
transforming tennis data in Xml with field notation grammars, and Section 3 presents the
context of field and graph notation grammars. Section 4 demonstrates the usage of both FN
and GN to represent the tennis data. In Section 5, we show the new web–based, graphical
user interface for the tennis tool, build with definite clause grammars (DCGs), created from
a first Html 5, CSS and JavaScript approach. Finally, Section 6 concludes with a summary.

2 Current Status of the Tennis Tool

Our current version of the tennis tool is packed in two Docker containers: the Convolutional
Neural Network (CNN) Tennis Recognition and a dockerized version of Prolog–based logic
programming tool Declare [Ba19; We21]. These containers will interact through a shared
volume, with Declare accessing the Xml file generated by the CNN [Ba19; Pr17].

Declare [Se94; Se97] – originally called DisLog – is a declarative logic programming tool
implemented in Prolog, which has been used in many previous publications since then.
The non–declarative features of Prolog have been used for the internal implementation of
Declare, but the external features of Declare are declarative. Declare uses Field and Graph
Notation Grammars to transform the unstructured Xml into a clean and structured XML
format. The resulting clean file will then be visualized in a web browser using a Prolog
web application. Additionally, we intend to incorporate data mining capabilities within the
browser, similar to our previous work in [We19].

To provide access to the original videos, we have two approaches. Firstly, tennis experts
can use their local videos (e.g., in mp4 format) by having Declare read and list them.
Secondly, we aim to enable other users to share videos through a cloud–based solution. The
architectural design of this system is depicted in Figure 1.



Xml and Html–Processing 3

The presented study builds upon our prior research conducted in [We22]. This paper serves
as a continuation of our previous work with significant updates; we will provide a concise
summary of the essential aspects covered in [We22] in the following section. In that paper,
we discussed the process of transforming tennis data stored in Xml format using field
notation grammars (FNGs). We addressed the need for cleaning and structuring Xml
files, generated by a convolutional neural network (CNN), for analysis. This is because the
automatically generated Xml files are found to be unsuitable.

The coordinates are recorded from a camera behind the court, rather than from a bird’s–eye
perspective. Additionally, not all frames of the video are interesting for the further process.
Therefore, only important frames should be filtered. To address these issues, we presented a
process of Xml transformation based on field notation grammars. We described how we
transformed the unclean data obtained from the CNN into structured, clean data that can be
used for further processing such as data mining. The transformation involves using FNGs
and solving linear equations to project x– and y–coordinates into the plane.

In the specific context of tennis data, we described the architecture of the CNN-generated
Xml file. The file that represents a tennis match is structured in sets, games, points, and
hits. It contains information about player positions, ball trajectories, and court coordinates.
We explained how the Xml file is structured based on the CNN’s analysis of the video.

The transformation process involves renaming rally tags to point tags, as each rally represents
a single point. Frames with the event value contact are identified as containing hits, and
the start and end of rallies are determined.

3 Xml Objects

The Extensible Markup Language Xml is a well–known standard data format for representing
and exchanging semi–structured data and knowledge. Prolog can handle complex tree–
structured objects nicely, and has an easy to use meta–programming property. Therefore
Prolog is very helpful for processing Xml [Ab00].

In [Di02; Se07; Se15; Se18], the declarative logic programming tool FnQuery/Pl4Xml
was developed for querying, transforming and updating Xml data. Two alternative represen-
tations for Xml have been introduced, the field notation and the graph notation, and the same
transformation languages are applicable for transforming and updating both representations.

In our prior research [We22], we had focused on field notation; the current paper shifts
the emphasis towards an in–depth exploration of graph notation. The field notation was
useful for filtering and renaming Xml elements. However, for the complete tennis data
transformation it is important to establish a link between different Xml elements. In this
section, we will first summarize the most important information of the Field Notation and
then introduce the Graph Notation. We will discuss the differences to the Field Notation
and the advantages of the Graph Notation.



4 Daniel Weidner and Dietmar Seipel

3.1 Xml Objects in Field Notation

Field Notation (FN) is a generic Document Object Model (DOM) for representing intricate
objects in Xml. FN encapsulates objects as Prolog triples T:As:C comprising a tag name T,
attribute/value pairs As, and sub-elements C, named content. This hierarchical representation
allows for the seamless navigation in and the manipulation of Xml data.

To transform Xml data in field notation, Pl4Xml introduces Field Notation Grammars
(FNGs). FNGs employ rules defined by the binary, infix–predicate --->/2, with the left
hand side representing the input FN–triple or Xml file, and the right hand side representing
the transformed output. By sequentially applying FNG rules, Xml data can be efficiently
modified, enriched, or restructured to suit specific requirements.

3.2 Xml Objects in Graph Notation

Conversely, by storing Xml objects as Prolog facts through an object/relational mapping,
FnQuery is capable to implement the backward axes of XQuery [Ch03; Wa07]. We are
able to define the graph notation as a relational representation of Xml, based on the two
relations ref/3 and val/2.

The graph notation database can store many Xml elements at the same time. In this approach,
unique identifiers are used to refer to elements 𝐼 and their descendant elements 𝐽. The
notation father(𝐽) represents the parent of 𝐽 within 𝐼, tag(𝐽) denotes the tag associated
with 𝐽 and text(𝐽) refers to the textual content of a text element 𝐽. With this we have

• 𝐼 is mapped to a fact reference(𝐼∗,tag(𝐼),𝐼,𝑁), where 𝐼∗ is an identifier that is
not the id of any other element in the database.

• A non–text element 𝐽 is mapped to a Prolog fact reference(father(𝐽),tag(𝐽),𝐽,𝑁).

• For every attribute/value–pair 𝐴 : 𝑉 of 𝐽 we get a fact attribute(𝐽, 𝐴, 𝑉).

• A text element 𝐽 is mapped to a fact value(father(𝐽),𝐽,𝑁).

The order of the sub–elements 𝐾 of a non–text element 𝐽 is reflected by the numbers 𝑁
in the facts reference(𝐽,_,𝐾,𝑁) and value(𝐽,𝑡𝑒𝑥𝑡 (𝐾),𝑁), which must all be different.
Consequently, the Xml elements stored within the Graph Notation database can be
reconstructed.

Interaction between Graph and Field Notation

For the transition to the Graph Notation, it is possible to switch by assigning the value gn
of the Declare variable fn_mode. An Fn–triple in field notation can be stored into the GN



Xml and Html–Processing 5

database using the predicate fn_to_gn/2. This will return an identifier, that refers to the
stored Fn–triple. It is also possible to reconstruct the stored Fn–triple using the inverse
predicate gn_to_fn/2. The items in the graph notation database, referenced by Id can be
loaded and saved from and to a file F, respectively, using the calls dread(xml, F, [Id])
and dwrite(xml, F, Id). For this the fn_mode has to be gn.

Advantages of the Graph Notation Database

The main advantage of Graph Notation are the additional axes in location steps, which we
could not and cannot use in Field Notation. If T is any Prolog term then it is possible to
select several elements of the Xml file. For example with preceding::T, we can select an
element with the tag T, that is preceding the considered Fn–triple in the document order,
except the ancestors. By making this switch, specifically in the context of tennis data, we
gain the ability to select the current court element when a frame is deemed interesting. This
implies that we need to transform the coordinates using the preceding court coordinates.

Comparison of Field and Graph Notation

Considering the advantages in expressibility offered by the Graph Notation over the Field
Notation, one might question the necessity of using Field Notation at all. This question can
be addressed by considering two key points. Firstly, the usage of Graph Notation Databases
requires the storage of the facts in a deductive database, which can lead to significant storage
requirements, particularly when dealing with large Xml files. Secondly, as expected, the
transformation process proved to be faster in Field Notation mode, since the navigation to
Xml sub–elements is faster in a term than in the Prolog database. For this, we conducted
transformations on several Xml files, using simple grammars that functioned equivalently
for both Field Notation and Graph Notation. In Listing 2 we dropped all operations using
backward axes, such as, e.g., preceding; we maintained consistent court coordinates and
avoided iterations and nesting. This allowed us to compare the transformations by initiating
the same conversion process using both FN and GN modes. We categorized the videos into
three types: Short videos (highlight reels), medium–length videos (extended highlights),
and long videos (full matches). The results of these comparisons are presented in Table 1.
Often, the operations were about 15 times faster on FN than on GN.

Length of Video (Type) FN Time [sec.] GN Time [sec.]

1–5 min (Short Highlight Videos) 0.02 – 0.1 1 – 2
10–20 min (Extended Highlight Videos) 1 – 2 10 – 20
90–180 min (Full Match) 5 – 10 60 – 150

Table 1: Rune Time Comparison of FN and GN Mode for Different Video Lengths



6 Daniel Weidner and Dietmar Seipel

4 Transforming Tennis Data Represented in Xml

The Xml transformations of our previous work [We22] had been using the field notation
for Xml data. In this paper, we combine them with the graph notation of Xml to obtain
additional transformations. In this section, we show four updates, which we did in our work.

1. To work with the current court coordinates, that are recognized, we want to add an
identification number. We therefore iterate court ids, which are not stored in the first
place. This can not be done with FNG’s because siblings need to be calculated.

2. We use these id’s to get the current court coordinates for calculating the ball trajectories
into the plane.

3. We want to calculate whether a game is finished or not, to get an automated nesting
of games (and in the future sets). For this, we check the times between the last hit of a
rally and the serve of the next rally. If there is a time delay of more than 15 seconds,
then there is a new game. In the future, we want to add scores, to calculate if a game
(and set) has ended, because times are imprecise, especially if the video is cut.

4. Hits, Points, Games and Sets are initially identified by the frame number. As for the
court iteration, we iterate all sets, games, points and hits.

4.1 Adding Court Identifiers

The CNN recognizes court coordinates. This recognition is done at the beginning and every
frame it is checked whether the coordinates differ, i.e. there was a camera movement. If this
is the case, then the CNN stores the new coordinates. We want to have a good access to the
court tags; especially, we want to know between which frames a court recognition appeared.
But since the CNN only stores the coordinates, we define a graph notation grammar to
generate court id’s, without changing the CNN storage implementation. This iteration
grammar can be seen in Listing 1

Court ---> Court :-

fn_item_parse(Court, court:_:_),

findall( ID,

( Court2 := Court/preceding::court,

Ida := Court2@id,

atom_to_number(Ida, ID) ),

Tuples ),

( Tuples = [] -> Id = '1'

; max(Tuples, ID_minus_one), Id is ID_minus_one+1 ),

Court := Court*[@id:Id].

Listing 1: Create Court ID’s



Xml and Html–Processing 7

Here, for a court tag we search all preceding tags with also the name court. If this list is
empty, we found the first court tag, so it gets the id 1. Otherwise, we take the maximal Id
that we have found and add 1. Note, that Court*[@id:Id] adds the attribute value pair id:Id
to the elements of court, with Id being set above.

4.2 Project Coordinates into the Plane Using Court Coordinates

Next, we aim to utilize the court tags and the stored coordinates to project ball coordinates onto
the plane for each relevant frame. Relevant frames are those with value rally_start/_end
and contact for the attribute event. In a preceding step, field notation grammars were
applied to frames for renaming them as hits. The grammar which executes the coordinate
transformation can be found in Listing 2.

Here, line 2 normalizes the fact and the lines 3 and 4 get time and event, if relevant. The
lines 5 and 6 get x– and y–coordinates for the ball and the x–coordinates of the players. By
combining the latter information with the players’ handedness and the y–coordinate of the
ball, it is possible to determine whether a hit is classified as either a forehand or a backhand
by the top (y–coordinate of ball > 0) or bottom player (y–coordinate of ball < 0), respectively.
This can be seen in the lines 27-31. We search for the maximal court id appearing in the
Xml–file before the current hit in the lines 8-12. We double–check this id with the lines
13-17. Then, the mathematical projection is done from line 17 to 26. Finally, the computed
information is stored and returned as New Hit, see the lines 32 and 33.

1 Hit ---> New_Hit :-

2 fn_item_parse(Hit, hit:_:_),

3 Time := Hit@time, Event := Hit@event,

4 member(Event, [rally_start,rally_end,contact]),

5 XPosBall := Hit@xPosBall, YPosBall := Hit@yPosBall,

6 XPosTopPl := Hit@xPosTopPl, XPosBotPl := Hit@xPosBotPl,

7 Source_Point = point(XPosBall,YPosBall),

8 hit_to_court(Hit, Court),

9 source_to_target_via_court(Source_Point, Court, Target_Point),

10 Target_point = point(XPos,YPos),

11 atom_to_number(YPos, YPos_Number),

12 ( YPos_Number < 0 -> XPosPl = XPosBotPl

13 ; XPosPl = XPosTopPl ),

14 Handedness = right,

15 determine_hand(XPosBall, XPosPl, Handedness, Hand),

16 As = [id:'1', hand:Hand, type:ground, time:Time, x:XPos, y:YPos],

17 fn_to_gn(hit:As:[], New_Hit).

18
19 hit_to_court(Hit, Court) :-

20 findall( Courtid,

21 ( Courtida := Hit/preceding::court@id,

22 atom_to_number(Courtida, Courtid) ),

23 Courts ),

24 max(Courts, MaxCourt),



8 Daniel Weidner and Dietmar Seipel

25 Match := Hit/ancestor::match,

26 Court := Match/descendent::court,

27 RealMaxCourt := Court@id,

28 atom_to_number(RealMaxCourt, MaxCourt).

29
30 source_to_target_via_court(Source_Point, Court, Target_Point) :-

31 XLT := Court@xLT, YLT := Court@yLT,

32 XLB := Court@xLB, YLB := Court@yLB,

33 XRT := Court@xRT, YRT := Court@yRT,

34 XRB := Court@xRB, YRB := Court@yRB,

35 LT = point(XLT, YLT), LB = point(XLB, YLB),

36 RT = point(XRT, YRT), RB = point(XRB, YRB),

37 vanish_point(LT, LB, RT, RB, Vanish),

38 view_point(LB, RB, Vanish, View),

39 project_point(Source_Point, LB, RB, Vanish, View, Target_Point).

Listing 2: Transformation of Ball Coordinates

The explanation of the mathematical projection using vanish_point/5, view_point/4 and
project_point/6 can be found in [We22].

4.3 Generating the Game Nesting

Next we want to nest the points by games and later sets. So far, the rallies appear sequentially
one after the other. But, we want to group them by the corresponding game and set. For this
we use the times stored in all frames. Since there is a break between two games, we notice
a time gap between them. We use this larger time difference to close one tag with name
game and open a new one. With this first approach, we generate a semi–plausible nesting of
points inside games, see Listing 3. In the future, our intention is to use logic programming
to compute a score. Using this technique, we aim to ascertain whether a game or a set has
been completed.

...

<game id='1' ...>

<point id='1' ...>

<hit id='1' .../> ... <hit id='1' .../> </point>

<point id='2'> ... </point>

...

</game>

<game id='2'>

...

Listing 3: Nesting of Points inside Games



Xml and Html–Processing 9

4.4 Adding Set, Game and Point Id’s and Final Xml–File

Like we did in Section 4.1, we add Id’s for all Sets, Games and Points. The first set of the
final Xml–file then looks like in Listing 4.

% XML and Match Prefix

<set id="1" video_file="samprasagassiset1.avi">

<game id="1" service="A" score_A="0" score_B="0">

<point id="1" top="B" error="0">

<hit id="1" hand="fore" type="ground" time="00:00:42" x="0.17" y="-9.07"/>

<hit id="2" hand="back" type="ground" time="00:00:44" x="-0.49" y="5.89"/>

...

</point>

...

</game>

...

</set

Listing 4: Final Xml–File

5 Updating the Graphical User Interface of the Tennis tool

This section will elaborate on the reasons for the transition from Xpce to Html. Furthermore,
we will provide an explanation of our implementation approach using Definite Clause
Grammars (DCGs) for incorporating Html functionality.

5.1 Using Docker, Html, and DCGs

The tennis tool, which is integrated into the toolkit Declare, has been using the GUI library
Xpce for visualizing the transformed tennis data. However, the graphical application plug–in
developed in Prolog using Xpce poses challenges for external accessibility to the tennis
tool. Furthermore, Xpce is incompatible with certain Linux versions that solely support
Wayland instead of X11, which limits the functionality of the tennis tool. Consequently,
there is a possibility of the tennis tool not functioning in certain Linux distributions.

Hence, our initial approach was to develop a website using Html5, CSS, and JavaScript,
considering that Declare already includes Html objects that incorporate Prolog commands
executed through Xpce. However, the challenge with this approach arises from our aim to
eliminate Xpce, as the same Html objects are incompatible with web browsers, since the
Prolog commands cannot be executed.



10 Daniel Weidner and Dietmar Seipel

Definite Clause Grammars (DCGs)

Nonetheless, we were able to leverage the basic framework consisting of Html5 CSS
and JavaScript following [Og23]. By adopting Definite Clause Grammars (DCGs), we
successfully developed a web application that fulfilled our requirements. ChatGPT describes
DCGs as follows: Definite Clause Grammars (DCGs) are a formalism used in the field
of computational linguistics and natural language processing for describing the syntax of
natural languages[Ab00; Co78; Sh86]. They are a type of logic programming, specifically
Prolog, that allows the specification of context–free grammars in a concise and readable
manner.

DCGs are defined by a set of rules, known as definite clauses, which define the structure of
sentences in a language. Each definite clause consists of a head and a body, separated by
the symbol :- (read as if or if and only if ). The head represents a non–terminal symbol
or a syntactic category, while the body specifies a sequence of terminals (words) and
non–terminals (other syntactic categories) that can follow the head. The following example
of a simple DCG rule describes a basic English sentence:

sentence --> noun_phrase, verb_phrase.

In this rule, sentence is the head representing a complete sentence, while noun_phrase and
verb_phrase are non–terminals representing a noun phrase and a verb phrase, respectively.
The comma (,) indicates that the noun phrase must be followed by a verb phrase in order
to form a valid sentence. DCGs also allow for additional features, such as constraints and
semantic annotations, to enhance the expressiveness and precision of the grammar.

One of the key advantages of DCGs is their ability to generate parse trees or parse sentences
using bottom–up parsing techniques. By employing techniques like leftmost derivation
and backtracking, DCGs can provide detailed syntactic analyses of sentences based on the
defined grammar rules. Overall, Definite Clause Grammars offer a powerful and flexible
approach for modeling the syntax of natural languages, and they are widely used in various
natural language processing tasks, including parsing, language generation, and machine
translation [Me03; No19].2

In our current approach, we employ this formalism to initially express Html code as DCGs
and subsequently utilize URI, variables, and additional Prolog code to enhance the web
application’s executability, making it on par with the original tennis tool.

2 This paragraph was originally drafted by ChatGPT and has been extended with references by us.



Xml and Html–Processing 11

5.2 DCGs for the Tennis Tool Web Application

In the following subsection, we will illustrate our process of defining the DCGs for the web
pages of the tennis tool, beginning with the representation of Html elements. For this
consider the following Html part:

<tag>

<subtag1 x="a">This is a subtag</subtag>

<subtag2>

<subsubtag>This is a subsubtag</subsubtag>

</subtag2>

</tag>

To define the structure of the DCGs, we establish the tag as the head of the DCG. The body
of the DCG consists of the unary predicate html. Within html, we utilize a list to represent
the content of the tag. Each element in the list follows a specific structure: a binary function
symbol representing the subtag’s name, with the first argument being a list of attribute/value
pairs for the subtag. The second argument can either be a string if the content of the Html
element is solely that string or a reference to another DCG (see subtag2) if the content is
multi–part. Then, the preceding Html part as DCG’s looks as follows:

tag -->

html([

subtag1([x="a"], ("This is a subtag")),

subtag2([], \subtag2) ])

subtag2 -->

html([

subsubtag([], ("This is a subsubtag")) ])

Instead of defining another DCG, one can also use a list of subelements. However, this
nesting quickly becomes confusing. For a naive parser, it is easier to distinguish only
between the two cases from above. Furthermore, one can also implement Prolog code within
the DCG body.

By integrating variables into our DCGs, we gain the ability to define them in a more concise
manner. This advancement gives us greater control over individual Html elements using the
commands of the Tennis Tool. In certain instances, it proves advantageous to employ URIs
for managing additional Html subpages, reducing the need for unnecessary web controls
with JavaScript. Depending on the specific application, incorporating JavaScript may still
be beneficial, although for the tennis tool this decision was made on a per–command basis.
The URI control is facilitated through the use of http_handler. Further details regarding
this implementation can be found in [Og23; Wi09].



12 Daniel Weidner and Dietmar Seipel

Figure 2 shows the previous Xpce–based Tennis Tool (upper part) and the new Prolog web
application (lower part). The lower part shows the transformed Tennis Tool, which has been
migrated to a web–based application implemented in Prolog with DCG’s. This transition
allows for enhanced accessibility and functionality, offering a modernized and user–friendly
interface for users to interact with the Tennis Tool.

6 Conclusion and Future Work

In this work, we have updated the process transforming tennis data in Xml, which had
originally been introduced in [We22]. Combining field and graph notation brings us closer
to a completely automated transformation of the Xml data derived from the video of a
tennis match.

Logic programming and field and graph notation grammars were very useful for transforming
this unclean Xml data. On the one hand, we have used FNG’s for filtering and renaming
certain Xml elements, on the other hand we have applied GNG’s, whenever more complex
executions were necessary.

To complete this transformation process, all that is missing now is the exact hitting type
and a score analysis for a better nesting, which we want to implement in the next step using
logic programming.

In addition, we have upgraded the Xpce based tennis tool to a Prolog web application
using DCGs. We also want to integrate the analysis with data mining that we have done in
previous work [We03; We19] using manually entered data,

References

[Ab00] Abiteboul, Serge and Buneman, Peter and Suciu, Dan: Data on the Web: From
Relations to Semistructured Data and Xml. Morgan Kaufmann, 2000.

[Ba19] Baumgart, M.: Erkennung von Spielstand, Schlagposition und Spielertrajektorien
beim Tennis, Master Thesis, University of Würzburg, 2019.

[Ch03] Chamberlin, Don and Florescu, Daniela and Robie, Jonathan and Simeon, Jerome
and Stefanescu, Mugur: XQuery: A Query Language for Xml. In: SIGMOD
Conference. Vol. 682, p. 50, 2003.

[Co78] Colmerauer, Alain: Metamorphosis grammars. Natural language communication
with computers/, pp. 133–188, 1978.

[Di02] Dietmar Seipel: Processing Xml–Documents in Prolog. In: Workshop on Logic
Programming (WLP 2002). 2002.

[Me03] Mellish, Christopher S. and Clocksin, William F.: Programming in Prolog: Using
the ISO Standard, 2003.



Xml and Html–Processing 13

[No19] Nogatz, Falco and Seipel, Dietmar and Abreu, Salvador: Definite Clause Grammars
with Parse Trees: Extension for Prolog. In: 8th Symposium on Languages, Ap-
plications and Technologies (SLATE 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019.

[Og23] Ogborn, Anne: Tutorial – Creating Web Applications in SWI-Prolog, https:
//github.com/Anniepoo/swiplwebtut/blob/master/web.adoc, 2012 (Accessed
on June 27, 2023).

[Pr17] Proestler, M.: Erkennung und Nachverfolgung von Balltrajektorien bei 2D-
Fernsehaufnahmen im Tennis, Master Thesis, University of Würzburg, 2017.

[Se07] Seipel, Dietmar: Pl4Xml– An Swi–Prolog Library for Xml Data Management
(Manual), Citeseer, 2007.

[Se15] Seipel, Dietmar: Deductive Databases, Lecture Notes of a Course at the University
of Würzburg, Lecture Script, since 2015.

[Se18] Seipel, Dietmar and Nogatz, Falco and Abreu, Salvador: Domain–Specific Lan-
guages in Prolog for Declarative Expert Knowledge in Rules and Ontologies.
Computer Languages, Systems & Structures/, 2018, issn: 1477–8424, url:
https://doi.org/10.1016/j.cl.2017.06.006.

[Se94] Seipel, Dietmar and Thöne, Helmut: DisLog – A System for Reasoning in Dis-
junctive Deductive Databases. In: Proceedings of the 5th International Workshop
on the Deductive Approach to Information Systems and Databases (DAISD 1994).
Universitat Politècnica de Catalunya., pp. 325–343, 1994.

[Se97] Seipel, Dietmar: DisLog – A Disjunctive Deductive Database Prototype. In: Proc.
Twelfth Workshop on Logic Programming (WLP’97). Pp. 136–143, 1997.

[Sh86] Shieber, Stuart M and Karttunen, Lauri and Kay, Martin and Pereira, Fernando
C.N.: A Compilation of Papers on Unification-based Grammar Formalisms, Pts. I
and II. Center for the Study of Language and Information, 1986.

[Wa07] Walmsley, Priscilla: XQuery. O’Reilly Media, Inc., 2007.
[We03] Wehner, J.: Verwaltung und Analyse von Zeitreihen zu Videosequenzen, Diploma

Thesis, University of Würzburg, 2003.
[We19] Weidner, Daniel and Atzmueller, Martin and Seipel, Dietmar: Finding Maximal

Non–Redundant Association Rules in Tennis Data. In: Declarative Programming
and Knowledge Management. Springer, pp. 59–78, 2019.

[We21] Weidner, Daniel and Waleska, Marcel and Seipel, Dietmar: Interfacing the
Declarative Toolkit Declare Using Python and Docker./, 2021.

[We22] Weidner, Daniel and Seipel, Dietmar: Xml–Processing Using Field Notation
Grammars Applied to Tennis Data./, 2022.

[Wi09] Wielemaker, Jan and others: Logic Programming for Knowledge–Intensive
Interactive Applications. 2009.

https://github.com/Anniepoo/swiplwebtut/blob/master/web.adoc
https://github.com/Anniepoo/swiplwebtut/blob/master/web.adoc
https://doi.org/10.1016/j.cl.2017.06.006


14 Daniel Weidner and Dietmar Seipel

A Appendix

Figure 1: Architecture of the Web Tennis Tool of Declare

Figure 2: The Html–GUI of the Tennis Tool


