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Automated Verification of Equivalence Properties in
Advanced Logic Programs

Jan Heuer1

Abstract: During the development process of an Answer Set Programming (ASP) encoding, it would
be desirable to have a tool that can automatically verify whether one subprogram can safely be replaced
by another one. Formally this corresponds to the problem of verifying the strong equivalence of two
programs. The translation tool anthem was developed to be used in conjunction with an automated
theorem prover to verify strong equivalence. The current version of anthem only works on positive
programs with a restricted input language. This paper2 extends the translation in anthem to support
a larger subset of the input language, namely negation, simple choices, and pools. The support of
negation requires an additional translation step that maps formulas from the logic of here-and-there to
classical logic. Furthermore, some automated theorem provers are compared for their ability to verify
the strong equivalence of logic programs.
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1 Introduction

In recent years, many industrial applications have been built using Answer Set Program-
ming [EGL16, Fa18]. Because of this, the need for formal verification tools for Answer
Set Programs has increased. One possible application of formal verification is to decide
whether a modified version of a program can replace the original without changing the
behaviour on the application domain. This task is made even more complex as, in other
programming paradigms, it is customary to split an application into smaller program parts.
In order to decide if the optimised version of the program can replace the original one, one
has to verify whether the new program works together correctly with the other program
parts on any input. This idea is captured by the concept of strong equivalence between two
logic programs [LPV01], which is the question whether a program can replace another one
in any context without modifying the semantics.

In order to verify this question, the translation tool anthem was developed [LLS19]. Using
anthem in conjunction with an automated theorem prover enables the automated verification
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of strong equivalence of two logic programs. The translation of anthem is based on the
translation 𝜏 used to define the semantics of the input language of gringo [Ge15]. However,
𝜏 transforms logic programs into infinitary propositional formulas, which are not suitable for
automated theorem proving. Therefore, anthem instead uses a new translation 𝜏∗, which
transform programs into finite first-order formulas. But the output produced by anthem
has the semantics of the logic of here-and-there whereas automated theorem provers work
with the semantics of classical logic. In the special case that the input programs are positive
programs3 the two semantics coincide, which makes the usage of anthem possible.

To illustrate this restriction let us look at the following example of two logic programs
defining a transitive relation 𝑝. The first program uses a simple choice rule4 to define the
relation 𝑝 and then uses a basic rule to make the relation transitive. The second program
again uses a choice rule to define the relation. However, to ensure that this relation is
transitive a constraint is used this time.

Program 1 Program 2
{ p(X,Y) } :- q(X), q(Y).
p(X,Y) :- p(X,Z), p(Z,Y),

q(X), q(Y), q(Z).

{ p(X,Y) } :- q(X), q(Y).
:- p(X,Z), p(Z,Y), not p(X,Y),

q(X), q(Y), q(Z).

It is not possible to verify the strong equivalence of these two programs using the current
version of anthem. A warning message is produced, stating that the inputs are non-positive
programs, from which we can conclude that the semantics of the output is the logic of
here-and-there.

Furthermore, the input language supported by anthem is restricted. For example it does not
support the usage of pools as in the fact c(r;g;b). to succinctly express multiple values to
succinctly the multiple facts c(r). c(g). c(b).

The goal of this work2 is to overcome these current limitations of anthem to enable the
verification of the strong equivalence of programs containing the features mentioned above.
The main obstacle to achieving this is to map the semantics of the logic of here-and-there
to the semantics of classical logic. To do so the transformation 𝜎∗ is presented in Sect. 3,
which is based on a transformation defined in [PTW01]. Furthermore, this work extends the
translation 𝜏∗ implemented by anthem to handle programs containing pools in Sect. 4.
Both the extended translation 𝜏∗ and the transformation 𝜎∗ are implemented in a new
version of anthem5 described in Sect. 5. As a secondary goal, we compare the ability
of several automated theorem provers to verify strong equivalence problems generated by
anthem in Sect. 6.
3 That is programs consisting of rules with a single atom in the head and no negation in the body.
4 For details on choice rules see [Ge15, Ge19]. In this work we only consider simple choice, i.e. rules of the form
{p(X)} :- q(X). which correspond to the formula 𝑞 (𝑋) → 𝑝 (𝑋) ∨ ¬𝑝 (𝑋) .

5 https://github.com/janheuer/anthem/releases/tag/v0.3
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2 Background

The logic of here-and-there is an intermediate logic between classical and intuitionistic logic.
It was first connected to answer set programming by [Pe97], who introduced a new logical
characterisation of answer sets as a form of minimal models in the logic of here-and-there.
It uses a standard propositional language built from a set of atoms P as well as the usual
logical symbols ⊥,¬,∧,∨, and→. The logical complexity of a formula 𝜙, written as 𝑙𝑐(𝜙),
is the number of occurrences of the logic symbols ¬,∧,∨, and→ in 𝜙. An HT-interpretation
is an ordered pair ⟨𝐻,𝑇⟩ of sets of atoms such that 𝐻 ⊆ 𝑇 .

The definition of satisfiability in the logic of here-and-there is in parts analogous to classical
logic; however, it significantly differs in the definition of negation and implication.

Definition 1 The satisfiability relation |= is recursively defined as follows:

• ⟨𝐻,𝑇⟩ ̸|= ⊥,

• for any atom 𝑝 ∈ P, ⟨𝐻,𝑇⟩ |= 𝑝 if 𝑝 ∈ 𝐻,

• ⟨𝐻,𝑇⟩ |= 𝜙1 ∧ 𝜙2 if ⟨𝐻,𝑇⟩ |= 𝜙1 and ⟨𝐻,𝑇⟩ |= 𝜙2,

• ⟨𝐻,𝑇⟩ |= 𝜙1 ∨ 𝜙2 if ⟨𝐻,𝑇⟩ |= 𝜙1 or ⟨𝐻,𝑇⟩ |= 𝜙2,

• ⟨𝐻,𝑇⟩ |= ¬𝜙 if ⟨𝑇,𝑇⟩ ̸|= 𝜙,

• ⟨𝐻,𝑇⟩ |= 𝜙1 → 𝜙2 if ⟨𝐻,𝑇⟩ |= 𝜙1 implies ⟨𝐻,𝑇⟩ |= 𝜙2 and
⟨𝑇,𝑇⟩ |= 𝜙1 implies ⟨𝑇,𝑇⟩ |= 𝜙2.

Note that ⟨𝑇,𝑇⟩ |= 𝜙 is equivalent to 𝑇 |= 𝜙 (in classical logic). The strong equivalence of
two logic programs is defined as follows [LPV01]:

Definition 2 Two programs, Π1 and Π2, are strongly equivalent if and only if for every
program Π, the answer sets of Π1 ∪ Π and Π2 ∪ Π are the same.

The following theorem from [LPV01, Theorem 1] reduces the question of strong equivalence
to a satisfiability problem in the logic of here-and-there.

Theorem 1 Two programs, Π1 and Π2 are strongly equivalent if and only if their represen-
tations as propositional formulas are equivalent in the logic of here-and-there.

3 Expressing the Semantics of the Logic of Here-And-There in Classical
Logic

The main idea of expressing satisfiability in the logic of here-and-there in classical logic is
to introduce a new set of atoms which represent the values of formulas in the “there” world.
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Formally, given a set of atoms P, a new set of atoms P′ is introduced as P′ = {𝑝′ | 𝑝 ∈ P},
which is disjoint to P. The formula 𝜙′ is the result of replacing every atom 𝑝 in 𝜙 with 𝑝′.
Given any set 𝑇 ⊆ P, 𝑇 ′ is defined as 𝑇 ′ = {𝑝′ | 𝑝 ∈ 𝑇}. Intuitively the “unprimed”
formulas represent the formulas evaluated in the “here” world, while the primed formulas
represent the ones evaluated in the “there” world (i.e. the relation ⟨𝑇,𝑇⟩ |= 𝜙).

Additionally, the condition 𝐻 ⊆ 𝑇 , i.e. every atom true “here” is also true “there”, has to be
encoded. This is done by adding the following set of formulas: A = {𝑝 → 𝑝′ | 𝑝 ∈ P}.
Satisfiability in the logic of here-and-there can then be expressed in classical logic by the
following transformation (based on [PTW01, Definition 2]):

Definition 3 Let 𝜙 be a formula. Then, 𝜎∗ (𝜙) is recursively defined as follows:

• if 𝜙 ∈ P ∪ {⊤,⊥}, then 𝜎∗ (𝜙) = 𝜙,

• if 𝜙 = (𝜙1 ◦ 𝜙2), for ◦ ∈ {∧,∨}, then 𝜎∗ (𝜙) = 𝜎∗ (𝜙1) ◦ 𝜎∗ (𝜙2),

• if 𝜙 = ¬𝜓, then 𝜎∗ (𝜙) = ¬𝜓′,

• if 𝜙 = (𝜙1 → 𝜙2), then 𝜎∗ (𝜙) = (𝜎∗ (𝜙1) → 𝜎∗ (𝜙2)) ∧
(
𝜙′1 → 𝜙′2

)
.

In order to state how the equivalence of two formulas in the logic of here-and-there can
be expressed in classical logic, let us first consider two lemmas. The first lemma related
interpretations in the logic of here-and-there to interpretations in classical logic.

Lemma 1 There exists a 1-to-1 correspondence between interpretations ⟨𝐻,𝑇⟩ in the logic
of here-and-there and classical interpretations 𝐼 over the alphabet P ∪ P′ such that 𝐼 |= A.

This can easily be verified by setting 𝐼 = 𝐻∪𝑇 ′ given a HT-interpretation ⟨𝐻, 𝑡⟩, and setting
𝐻 = 𝐼 ∩P and 𝑇 = {𝑝 | 𝑝 ∈ 𝐼 ∩P′} given a classical interpretation 𝐼, for details see [He20].
The second lemma relates satisfiability in the logic of here-and-there to satisfiability in
classical logic.

Lemma 2 Let 𝜙 be a formula. An HT-interpretation ⟨𝐻,𝑇⟩ satisfies 𝜙, if and only if the
classical interpretation 𝐼 = 𝐻 ∪ 𝑇 ′ (over the alphabet P ∪ P′) satisfies 𝜎∗ (𝜙).

This can be verified by comparing Definition 3 and Definition 1, for details see [He20].
Finally, the theorem on expressing the equivalence of two formulas in the logic of here-and-
there in classical logic can be stated:

Theorem 2 (HT-Equivalence in Classical Logic) Let 𝜙1 and 𝜙2 be formulas. The formula
𝜙1 ↔ 𝜙2 is valid in the logic of here-and-there, if and only if the formula 𝜎∗ (𝜙1) ↔ 𝜎∗ (𝜙2)
is satisfied by every classical interpretation 𝐼 over the alphabet P ∪ P′ such that 𝐼 |= A.
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Proof. The formula 𝜙1 ↔ 𝜙2 is satisfiable in the logic of here-and-there iff for every
HT-interpretation ⟨𝐻,𝑇⟩, ⟨𝐻,𝑇⟩ |= 𝜙1 iff ⟨𝐻,𝑇⟩ |= 𝜙2. Similarly, 𝜎∗ (𝜙1) ↔ 𝜎∗ (𝜙2) is
satisfied by every classical interpretation 𝐼 iff for every classical interpretation 𝐼, 𝐼 |= 𝜎∗ (𝜙1)
iff 𝐼 |= 𝜎∗ (𝜙2).

By Lemma 1 there is a 1-to-1 correspondence between interpretations ⟨𝐻,𝑇⟩ in the logic of
here-and-there and classical interpretations 𝐼 with 𝐼 |= A. By Lemma 2 ⟨𝐻,𝑇⟩ satisfies 𝜙𝑖
iff the corresponding classical interpretation 𝐼 satisfies 𝜎∗ (𝜙𝑖), for 𝑖 = 1, 2. Therefore,
⟨𝐻,𝑇⟩ |= 𝜙1 iff ⟨𝐻,𝑇⟩ |= 𝜙2 is equivalent to 𝐼 |= 𝜎∗ (𝜙1) iff 𝐼 |= 𝜎∗ (𝜙2). □

4 Translating Logic Programs into Classical First-Order Formulas

4.1 Input Language

The definition of the input language in this section extends the input language of the previous
version of anthem [LLS19] by pooling6. Pooling is a feature similar to intervals. Both are
shorthand notations allowing one to express a set of values in a single term. However, the
difference is that intervals only make it possible to express a set of consecutive integers.
With pools, it is possible to express non-consecutive integers as well as non-numerical
values. Using pools in atoms in either the head or the body is again similar to using an
interval, corresponding to a disjunction or conjunction respectively.

More formally, the following two alternatives are added to the recursive definition of
program terms [LLS19, Sect. 2]7:

• if 𝑡1, . . . , 𝑡𝑘 are program terms then (𝑡1, . . . , 𝑡𝑘) is a program term,

• if 𝑡1, . . . , 𝑡𝑘 are program terms then (𝑡1; . . . ; 𝑡𝑘) is a program term.

The definition of an atom is extended by the following [LLS19, Sect. 2]:

• 𝑝(t1; . . . ; tk) is an atom, where 𝑝 is a symbolic constant and each ti is a tuple of
program terms.

4.2 Transforming Logic Programs into First-Order Formulas

The definition of the translation 𝜏∗ in this section corresponds to the definition from [LLS19,
Sect. 6] and is extended to cover the new input language. We only present the new parts
of the definitions, for the full definitions see [LLS19, Sect. 6]. The target language of this

6 For more formal details on pools see [Ge15, Ge19].
7 In [Ge15, Sect. 2.1] program terms are simply called terms.
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translation is a standard first-order language with quantifiers. Notably, this language has
variables of two sorts program variables and integer variables.

𝜏∗ is defined using two translations 𝜏𝐵 and 𝜏𝐻 for the body and head of a rule respectively.
Before defining these translations the formula val𝑡 (𝑍), expressing that 𝑍 is one of the values
of the program term 𝑡, needs to be defined. This is necessary, as in the input language a term
can express a set of values (e.g. by using an interval or a pool), whereas the target language
does not include sets.

The following extends the definition of val𝑡 (𝑍) ([LLS19, Sect. 6]) by tuples and pools.

Definition 4 For every program term 𝑡 the formula val𝑡 (𝑍), where 𝑍 is a program variable
that does not occur in 𝑡, is recursively defined as follows:

• if 𝑡 is (𝑡1, . . . , 𝑡𝑘), then val𝑡 (𝑍) is

∃𝐼1 . . . 𝐼𝑘 (𝑍 = (𝐼1, . . . , 𝐼𝑘) ∧ val𝑡1 (𝐼1) ∧ · · · ∧ val𝑡𝑘 (𝐼𝑘)),

• if 𝑡 is (𝑡1; . . . ; 𝑡𝑘), then val𝑡 (𝑍) is

∃𝐼1 . . . 𝐼𝑘 (val𝑡1 (𝐼1) ∧ · · · ∧ val𝑡𝑘 (𝐼𝑘) ∧ (𝑍 = 𝐼1 ∨ · · · ∨ 𝑍 = 𝐼𝑘)),

where 𝐼1, . . . , 𝐼𝑘 are fresh program variables.

Next are the definition of the translations 𝜏𝐵 and 𝜏𝐻 which are applied to the expressions in
the body and head of a rule respectively. They extend the definitions in [LLS19, Sect. 5] to
handle atoms containing pools.

Definition 5

• 𝜏𝐵 (𝑝(𝑡1; . . . ; 𝑡𝑘)) is 𝜏𝐵 (𝑝(𝑡1)) ∨ · · · ∨ 𝜏𝐵 (𝑝(𝑡𝑘)),

• 𝜏𝐵 (not 𝑝(𝑡1; . . . ; 𝑡𝑘)) is 𝜏𝐵 (not 𝑝(𝑡1)) ∨ · · · ∨ 𝜏𝐵 (not 𝑝(𝑡𝑘)),

• 𝜏𝐵 (not not 𝑝(𝑡1; . . . ; 𝑡𝑘)) is 𝜏𝐵 (not not 𝑝(𝑡1)) ∨ · · · ∨ 𝜏𝐵 (not not 𝑝(𝑡𝑘)).

Definition 6

• 𝜏𝐻 (𝑝(𝑡1; . . . ; 𝑡𝑘)) is 𝜏𝐻 (𝑝(𝑡1)) ∧ · · · ∧ 𝜏𝐻 (𝑝(𝑡𝑘)),

• 𝜏𝐻 ({𝑝(𝑡1; . . . ; 𝑡𝑘)}) is 𝜏𝐻 ({𝑝(𝑡1)}) ∧ · · · ∧ 𝜏𝐻 ({𝑝(𝑡𝑘)}).

Finally, 𝜏∗ can be defined using these components.
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Definition 7
𝜏∗ (𝐻 ← 𝐵1 ∧ · · · ∧ 𝐵𝑛)

is defined as the universal closure of the formula

𝜏𝐵 (𝐵1) ∧ · · · ∧ 𝜏𝐵 (𝐵𝑛) → 𝜏𝐻 (𝐻).

For any program Π, 𝜏∗Π is the set of formulas 𝜏∗𝑅 for every rule 𝑅 in Π.

4.3 Expressing Strong Equivalence in Classical Logic

After applying 𝜏∗, the resulting formulas will still have the semantics of the logic of
here-and-there. Therefore, it is still not possible to verify the strong equivalence of two
programs using theorem provers for classical first order logic. An exception is the case of
two positive logic programs, as in that case, the semantics of the logic of here-and-there
coincides with classical logic. This is the basis for the previous version of anthem [LLS19].

However, with a first-order generalisation of the transformation 𝜎∗ given by Definition 3,
it is possible to reduce the problem of verifying strong equivalence to classical first-order
logic, by expressing the semantics of the formulas from the logic of here-and-there in
classical logic. The first-order generalisation is given by the following definition extending
Definition 3:

Definition 8 Let 𝜙 be a formula. Then, 𝜎∗ (𝜙) is recursively defined as follows:

• if 𝜙 ∈ P ∪ {⊤,⊥}, then 𝜎∗ (𝜙) = 𝜙,

• if 𝜙 = (𝜙1 ◦ 𝜙2), for ◦ ∈ {∧,∨}, then 𝜎∗ (𝜙) = 𝜎∗ (𝜙1) ◦ 𝜎∗ (𝜙2),

• if 𝜙 = ¬𝜓, then 𝜎∗ (𝜙) = ¬𝜓′,

• if 𝜙 = (𝜙1 → 𝜙2), then 𝜎∗ (𝜙) = (𝜎∗ (𝜙1) → 𝜎∗ (𝜙2)) ∧
(
𝜙′1 → 𝜙′2

)
,

• if 𝜙 = 𝑄𝑋𝜓, for 𝑄 ∈ {∀, ∃} then 𝜎∗ (𝜙) = 𝑄𝑋𝜎∗ (𝜓).

Using this generalised 𝜎∗, the following theorem can be established8 (for a proof see [He20]):

Theorem 3 A program Π1 is strongly equivalent to a program Π2 if and only if 𝜎∗ (𝜏∗Π1)
is equivalent to 𝜎∗ (𝜏∗Π2) in every classical interpretation 𝐼 (over the alphabet P ∪ P′)
such that 𝐼 |= A.
8 We assume bot classical as well as HT-interpretations to interpret equality and arithmetic in the standard way.
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5 Implementation

The extension of 𝜏∗ as well as the additional transformation 𝜎∗ are implemented in
anthem 0.39. To obtain the Abstract Syntax Tree (AST) of the given input program
anthem makes use of the clingo API. The AST is then transformed into a first-order AST
representing the first-order formulas using 𝜏∗. During the transformation, a flag keeps track
of the semantics of the formulas. If a rule contains either negation or a choice this flag is set
to the semantics of the logic of here-and-there.

Depending on how the semantics-flag is set, after the transformation defined by 𝜏∗ terminates,
𝜎∗ is applied. Before transforming the formulas, the respective prime atoms and the prime
axioms are created. The implementation of the actual transformation defined by 𝜎∗

(Definition 8) is done in two steps. First, all formulas are duplicated. Second, in the first copy
all negated atoms are replaced by their “primed” variant, and in the second copy all atoms
are replaced by their “primed” variant. This is a slight simplification of 𝜎∗ as defined in
Definition 8. But it can easily be seen that the implemented 𝜎∗ is equivalent to Definition 8
(in the context of the considered input language).

Finally, anthem outputs the obtained first-order formulas. If anthem is used with one
input program, anthem prints all the formulas obtained from the rules in the program.
If anthem is called with two input programs a formula is constructed that expresses the
strong equivalence of the two programs. Applied to programs containing negation or simple
choices anthem prints the info message

info: mapped to output semantics: classical logic

indicating that 𝜎∗ was applied to transform the formulas to be in the semantics of classical
logic.

In order to verify the strong equivalence of two programs using automated theorem provers,
anthem provides the output format TPTP [Su09]. Specifically, anthem uses the typed
first-order form (TFF [Su12]) with integer arithmetic. The output of anthem can then be
used as the input to an automated theorem prover to verify the strong equivalence of the two
input programs. Some options for automated theorem provers supporting the TFF language
with integer arithmetic are compared in the next section.

6 Experimental Evaluation

6.1 Automated Theorem Provers

A large number of automated theorem provers support the TPTP language. However, the
number of provers supporting the TPTP dialect TFF with integer arithmetic is significantly

9 https://github.com/janheuer/anthem/releases/tag/v0.3
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smaller. From the available options, some have also not been updated in a long time and
trying to install them results in errors.

The following provers are tested in the remainder of this section: cvc4 version: 1.810,
princess version: 2020-03-1211, vampire version: 4.5.112, and zipperposition ver-
sion: 1.513.

6.2 Example Logic Programs

Before comparing the theorem provers let us look at some example logic programs containing
negation and simple choices (i.e. with just a single atom), which anthem can translate to
classical first-order logic by making use of 𝜎∗ (Sect. 4.3).

The first example replaces a program stating that p is true when q or the negation of q holds
by a fact.

Program 1.A Program 1.B
p :- q.
p :- not q.

p.

The two programs are not strongly equivalent, as by adding the rule q :- p Program 1.A
does not have an answer set while Program 1.B has the answer set {𝑝, 𝑞}. Therefore, all
theorem provers are unable to verify the strong equivalence.

The next example shows that the previous two programs can be made strongly equivalent by
adding the constraint :- q.

Program 2.A Program 2.B
p :- q.
p :- not q.
:- q.

p.
:- q.

All theorem provers verify that the two programs are strongly equivalent in under a second.

Next we will consider two slightly longer programs. The final rule of the first program
s :- not r can be safely removed from the program as at least one of p and q always
holds (because of the first two rules) and so the body of either rule four or five is satisfied.

10 https://github.com/CVC4/CVC4/releases/tag/1.8, with options --lang tptp --stats --tlimit
=300000

11 http://www.philipp.ruemmer.org/princess-sources.shtml, with options-inputFormat=tptp -
portfolio=casc -timeout=300000

12 https://github.com/vprover/vampire/releases/tag/4.5.1, as vampire provides parallelisation it is
used in two configurations: --mode casc --time_limit 300 (denoted by vampire), and using the paralleli-
sation with the additional option --cores 4 (denoted by vampireP)

13 https://github.com/sneeuwballen/zipperposition/releases/tag/1.5, with options -timeout 300

https://github.com/CVC4/CVC4/releases/tag/1.8
http://www.philipp.ruemmer.org/princess-sources.shtml
https://github.com/vprover/vampire/releases/tag/4.5.1
https://github.com/sneeuwballen/zipperposition/releases/tag/1.5
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Program 3.A Program 3.B
p :- not q.
q :- not p.
r :- p, q.
s :- p.
s :- q.
s :- not r.

p :- not q.
q :- not p.
r :- p, q.
s :- p.
s :- q.

The strong equivalence of the programs is verified by all theorem provers.

The next example attempts to rewrite a logic program, stating that exactly one of p and q
has to be true, without using choice rules.

Program 4.A Program 4.B
{ p }.
{ q }.
:- p, q.
:- not p, not q.

p :- not q.
q :- not p.

However, the two programs are not strongly equivalent as adding both p and q as facts
results in a valid answer set {𝑝, 𝑞} for Program 4.B while Program 4.A does not have an
answer set with these facts. Consequently, none of the theorem provers manages to verify
the strong equivalence.

By adding the constraint :- p, q to the second program, the two programs can be made
strongly equivalent as shown in the following example.

Program 5.A Program 5.B
{ p }.
{ q }.
:- p, q.
:- not p, not q.

p :- not q.
q :- not p.
:- p, q.

The strong equivalence of the two programs can successfully be verified by all theorem
provers.

Next is are the example programs from Sect. 1 defining a transitive relation 𝑝 using a choice
rule in combination with a basic rule and constraint respectively.

Program 6.A Program 6.B
{ p(X,Y) } :- q(X), q(Y).
p(X,Y) :- p(X,Z), p(Z,Y),

q(X), q(Y), q(Z).

{ p(X,Y) } :- q(X), q(Y).
:- p(X,Z), p(Z,Y), not p(X,Y),

q(X), q(Y), q(Z).

zipperposition is the only prover that does not manage to verify this example in under
300 s.
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Finally, Program 7.B attempts to simplify Program 7.A by removing the constraint
:- p(X), not q(X) and instead adding the condition q(X) to the body of the choice rule.

Program 7.A Program 7.B
{ p(X) }.
:- p(X), not q(X).

{ p(X) } :- q(X).

This is, however, not a strongly equivalent transformation, as simply adding the fact p(1)
results in Program 7.A being unsatisfiable while Program 7.B has an answer set consisting
of just p(1). Thus, none of the theorem provers verifies the strong equivalence of the two
programs.

6.3 Comparison of Automated Theorem Provers

The theorem provers were compared on a set of 21 example strong equivalence problems.
All provers were used with a timeout of 300 s. For full details on the used examples and
detailed results see [He20].

vampire managed to verify the most examples, just running into a timeout for one example.
cvc4 only failed to do so on four of the examples with positive programs. princess failed
on seven examples, and zipperposition failed on nine examples.

cvc4 princess vampire vampireP zipperposition

#Solved problems 17 14 20 20 12

Average time 0.020 s 3.811 s 7.368 s 1.347 s 0.180 s

Tab. 1: Results of the theorem prover comparison

In most examples, cvc4 has the shortest run time. Using the parallelisation of vampire
brings significant improvements in most examples, often bringing the time onto a similar
level as cvc4 or even making vampire faster. Both princess and zipperposition are
most of the time quite a bit slower than cvc4 and vampire (with princess being the
slower one), but they still manage to verify most examples in one second or less.

In conclusion, cvc4 and vampire seem to be the best fit for the kind of problems generated
by anthem. While both princess and zipperposition do not perform much worse,
they are not a better choice (than cvc4 or vampire) in any of the examples and run into
timeouts more often compared to cvc4 and vampire. Therefore, using cvc4 and vampire
in conjunction with anthem seems to be the best option.

7 Contributions and Future Work

First, the new transformation 𝜎∗ was introduced. A similar transformation was first
introduced by [PTW01]. The transformation considered here is a simplified version of the
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one in [PTW01]. In [PTW01] the same simplification is only applied to expressions (i.e.
formulas only consisting of atoms and the connectives ∧,∨, and ¬). In this work, 𝜎∗ is used
to express the equivalence of two formulas in the logic of here-and-there in classical logic,
which is formalised in Theorem 2.

Second, the translation 𝜏∗ was extended to cover an input language containing pools.
Theorem 3 formalises how the extended 𝜏∗ can be combined with 𝜎∗ to express the strong
equivalence of two logic programs with an extended input language in classical logic.

Third, a new version of anthem implements the extended translation 𝜏∗ as well as the
transformation 𝜎∗ enabling the verification of strong equivalence of non-positive programs
by using an automated theorem prover for classical logic. A similar system was developed
by [CLL05], which utilises a transformation similar to 𝜎∗. However, the system only
supported ground programs in a much more limited input language compared to anthem.
While disjunctions are supported, choices, comparisons, arithmetic expressions, intervals,
and pools are not supported. The requirement of ground programs means that programs have
to be instantiated with a particular input, thus losing the ability to verify the equivalence
under all possible inputs. Another difference is how the verification is done. The system
of [CLL05] uses a SAT solver and can generate counter-examples for programs that are not
strongly equivalent. Other similar system were introduced in [ETW05] for the propositional
case and in [Oe06] for the non-propositional case. These two systems offer the advantage of
considering more notions of equivalence besides strong equivalence. Both tools, however,
have a more restricted input language than anthem.

Fourth, options for automated theorem provers which are compatible with anthem are
investigated. Four automated theorem provers (cvc4, princess, vampire, and zipperpo-
sition) are tested on several examples. cvc4 and vampire emerged as the best options
to use with anthem. princess and zipperposition both only manage to verify fewer
examples compared to cvc4 and vampire.

Future work on anthem is mainly concerned with extending the input language. Desirable
language features to support include an extended version of choices and aggregates, as both
are essential features in most applications of answer set programming.

Future work will also have to include a further investigation into the theorem provers
used in conjunction with anthem. As the strong equivalence problems naturally lie in
a non-classical logic, exploring theorem provers for either the logic of here-and-there or
intuitionistic logic could be beneficial [Ot08, Ot21]. However, it seems most likely that it
will be necessary to assist the theorem provers in the verification process. A method to do
so has already been implemented for the version of anthem used to verify the correctness
of logic programs [Fa20]. A different approach could be an integration with interactive
theorem proving systems that support a combination of interactive and automated theorem
proving.
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